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An approach to quantum physics (QP) is proposed that is characterized by the 
attempt to give up the verificationist theory of truth underlying the standard 
interpretation of QP. As a first step, an observatively minimal language L is 
constructed that is endowed with a Tarskian truth theory. Then, a set of axioms 
is stated by means of L that hold both in classical physics and in QP, and the 
further language Le of all properties is constructed. The concepts of meaning and 
testability do not collapse in L and L e, hence quantum logic is interpreted as a 
theory of testability in QP, and QP turns out to be semantically incomplete. 
Furthermore, semantic and pragmatic compatibility of physical properties are 
distinguished in L~, and the concepts of testability and conjoint testability of 
statements are introduced. In this context some known quantum paradoxes can 
be avoided, and a new general principle (MGP) characterizes the truth mode of 
empirical physical laws. MGP invalidates the Bell theorem and, presumably, the 
Bell-Kochen-Specker theorem, and introduces a pragmatic contextuality in QP 
in place of the semantic contextuality that should occur because of these theorems. 

1. I N T R O D U C T I O N  

It is well known that the standard interpretation of quan tum physics 
(QP) is based on the adoption of a verificationist theory of truth for the 

language of QP. This choice entails that no meaning can be attributed to 
nontestable statements, and implies that truth and epistemic accessibility 

(here, briefly, tes tabi l i ty)  be identified in the language of physics. But this 
identif ication can be criticized from an epistemological v iewpoint  (e.g., Pop- 
per, 1969) and constitutes in my opinion the deep root of many  quantum 
paradoxes. Therefore, the question arises whether the language of QP can 
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be endowed with a correspondence truth theory which allows us to restore 
the distinction between truth and testability. 

I have tried to show in a number of papers (Garola, 1991, 1992a-c, 
1993, 1994, 1995a,b) that the above question admits a positive answer. If 
correct, this answer is rather innovative. Indeed, contrary to Dummett (1975), 
I retain that a correspondence theory of truth, when formalized by a Tarskian 
theory of truth, does not imply any ontological assumption on reality, since 
the Tarskian theory is "ontologically neutral," as stated by Tarski himself 
(Tarski, 1952; Dalla Pozza and Garola, 1995). But a correspondence theory 
of truth, even if it is ontologically neutral, is compatible with some kind of 
realistic interpretation of QP, which conflicts with the orthodox position. 
Hence, the perspective proposed in the above papers is an alternative to the 
standard viewpoint, and I call it semantic realism (SR) in the following. I 
would like to report here on the most recent results obtained in this research, 
the details of which will be published in a forthcoming paper by myself and 
L. Solombrino. 

2. THE LANGUAGE L 

In order to realize the SR program I have constructed in the papers 
quoted in the Introduction a formalized language L (a first-order predicate 
calculus extended by means of statistical quantifiers) endowed with a Tarskian 
truth theory, by means of which all statements regarding testable physical 
properties of samples of a given physical system can be expressed. I have 
classified elsewhere L as an observative sublanguage of the higher order 
language L* that should be needed in order to express formally all laws of 
a physical theory (I will not discuss L* here, since its construction would 
be long and difficult). Actually, not all statements in L are observative, but 
L is observatively minimal, in the sense that it is a minimal sublanguage of 
L* that contains the observative part of L*. Since I cannot deal with L in detail 
for the sake of brevity, I report here only the basic scheme for constructing and 
interpreting it. 

(i) Alphabet of L. The set X of individual variables; two disjoint sets ~f 
and ~ of monadic predicates, called states and effects, respectively; standard 
logical connectives ~, A v, -->, ~ ,  and quantifiers 3, V; a family {~r}r~I0.11 
of statistical quantifiers; the auxiliary symbols (.) and/ .  

(ii) Formation rules. The set �9 of all well-formed formulas (wffs) of 
L is obtained by means of standard (recursive) formation rules, together with 
the following rule regarding statistical quantifiers: 

let x E X, A(x), B(x) E ~ ,  r ~ [0,1]; then (~r,x)(A(x)/B(x)) ~ 

(iii) Semantics. The following sets and objects are introduced in L: the 
set I of laboratories; for every i ~ I, the (finite) domain Di of  i; for every 
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i ~ L the set  •i = {o-i: S -'-) Di} of the interpretations of the (individual) 
variables; for every i e /, ~ri ~ Ei, and x ~ X, the extension ~ri(x) ~ Di of 
x; for every i ~ I and S E 5r the extension pi(S) C Di of S; for every i E 
I and F ~ 9 ,  the extension pi(F) C Di of F; the set i C I of all statistically 
relevant laboratories. Then, a Tarskian truth theory, suitably extended in such 
a way as to apply to statistical wffs, is assumed on L. Hence, the connectives 
7, A, v, ---~, ~ and the quantifiers 3, V are interpreted as not, and, or, 
i f . . .  then, iff, and exists, for  every respectively, as usual in classical logic. 
Furthermore, a statistical wff of the form (w,x)(A(x)/B(x)) is true in the 
laboratory i iff, roughly speaking, the ratio between the number of elements 
in Di that make A(x) and B(x) true and the number of elements that make 
B(x) true (assumed to be nonzero in i) is r. Thus, whenever an interpretation 
~; of the variables is given in the laboratory i, every wff of L has a truth 
value in i. 

(iv) Interpretation. Following Ludwig (1983), states and effects are 
(bijectively) interpreted on equivalence classes of the sets I-I and ~t of all 
preparing and dichotomic registering devices associated to a given physical 
system ~ ,  respectively. Laboratories are interpreted as space-time regions in 
the actual world. For every i e /, the set Di is interpreted as the set of all 
individual samples of ~ prepared in i, or physical objects, hence for every 
ch E Zi and x e X, cri(x) is a physical object in D;. For every i e L the 
extension pi(S) of the state S in the laboratory i is interpreted as the set of 
all physical objects prepared in i by means of devices belonging to the 
equivalence class S, while the extension p;(F) of the effect F consists of all 
physical objects in i which would pass the test whenever tested with any 
device belonging to the equivalence class F. Finally, I is intuitively interpreted 
as the set of laboratories where a large number of physical objects is produced 
and all preparations and registrations are performed with the caution required 
by the physical theory that is adopted (the Tarskian truth theory defined on 
L refers to i rather than to I; in particular, this occurs when universally 
quantifying on laboratories, as in the expression "for every laboratory i"). 

(v) By referring to i, three preorder relations can be defined on q~ and 9 .  
Logical preorder C: 
for every A l, A2 E fir, At C A2 iff for every i ~ i, As is true for every 

interpretation cr i E ~i  such that A~ is true; 
for every x e X and FI, F2 ~ 9 ,  Fi C /72 iff Fl(x) C Fe(x). 
Statistical p r e o r d e r / :  
for every Al, A2 ~ fir, Al Z. As iff for every S ~ ~? and i ~ i, (ITrlX)(A 1] 

S(x)) and (v~2x)(A2/S(x)) true in i imply q --- re; 
for every x ~ X and FI, F2 ~ 9 ,  Fj Z_ F2 iff Fl(x) /- F2(x). 
Deterministic preorder <:  
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for every Al, A2 E q~, Ai < A2 iff for every S ~ bo, (Vx)(S(x) --> Al) 
true in every i E i implies (Vx)(S(x) ---> A2) true in every i E i; 

for every x E X and F1, F2 ~ ~,  Fl < F2 iff Fl(x) < Fz(x). 

The above preorders canonically induce three equivalence relations =-, 
-~, ~ on �9 and ~,  which we call logical, statistical, and deterministic 
equivalence relations, respectively (note that the statistical and the determinis- 
tic preorders on ~ translate in our context the orders introduced in the Ludwig 
and Piron approaches to the foundations of QP, respectively). 

3. STATES AND EFFECTS 

Based on the interpretation of L discussed in Section 2, I have introduced 
in a previous paper (Garola, 1991) a set of assumptions and definitions on 
states and effects that hold both in QP and in classical physics (CP). But a 
deeper analysis shows that this conceptual apparatus is not adequate in the 
case of compound quantum systems. Therefore, it will be substituted here 
by a new generalized set of assumptions and definitions, which reduces to 
the previous one in the case of noncompound systems [the symbol n(d~) 
denotes the number of elements in the finite set ~b in the following]. 

AX 1. (i) Let Si, $2 ~ bo. If, for every i ~ ] and F ~ ~,  

n(pi(S1) 0 pi(F)).n(pi(S2)) : n(pi(S2) A pi(F)) .n(pi(Sl)  ) 

then $1 = $2. 
(ii) For every $1, $2 E bo, if Sl 4: $2, then, for every i E ], pi(SO A 

pi(S2) = ~ .  
AX 2. For every Fi, F2 ~ ~,  Fi = F2 iff Fl --= Fe iff Fl --~ F2. 
AX 3. For every F E ~,  an F'  ~ ~ exists such that, for every i s i, 

oi(F')  = Di\Pi(F). 
DEF 1. For every S c bo, the set ~s  = {F E ~ l f o r  every i ~ i, p/(S) 

pi(F)} is called the certainly true domain of S in ~.  
DEF 2. For every i ~ i and S ~ 5?, Oi(S) = NF~sPi(F).  
DEF 3. The set boe = {S ~ boll or every S* c bo, pi(S*) ~ pi(S) 

in every i ~ 1 implies S* = S} is called the set of pure states of the 
physical system. 

AX 4. For every i ~ ] and Si, $2 ~ b~ 

n(pi(S1) 1~ 1~i(S2) ) 'n(pi(S2) ) = n(pi(S2) ("1 Oi(Sl) ) .n(pi(Sl) ) 

DEF 4. The symbol ~_ denotes the preclusivity (nonreflexive and sym- 
metric) relation on bop such that, for every $1, $2 ~ bop, $1 ~_ $2 iff, for 
every i ~ L pi(SI) A (9i($2) = Q~ [equivalently, pi(S2) (~ pi(S1) = Q~]. 
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DEF 5. The symbol • denotes the weak orthocomplementation on the 
power set ~(5ee) such that 

H e ~ ( ~ e )  ---> H • = {S e 5?plfor every S* e H, S a_t_ S*} 

DEF 6. The symbol • • denotes the closure operation on the power set 
~(Sfp) such that H E ~(9~ ---) (Hi )  • ~ ~(~p) .  

DEF 7. The symbol (~,  C) denotes the complete orthocomplemented 
lattice of all •177 subsets of the power set ~(5r ordered by set- 
theoretic inclusion [then fq and U denote meet and join in (Ss C_C_), respectively, 
in the following]. 

DEF 8. Let 5?t: F e 9 ~ 5ft(F) = {S e 3~ for every i e i, pi(S) C pi(F)} 
E @(9~e). Then, ~~ is called the certainly-yes domain ofF. Analogously, the 
set 9~t(F) = {S E 9 :  for every i E 1, pi(S) fq pi(F) = Q} is called the 
certainly-no domain of F. 

DEF 9. The set 9 e = {F E 9[,�89176 E ,~, ~~ = ,~?(F)} C 9 is 
called the set of (nouns of) observative exact effects, or testable properties. 

AX 5. For every Fi, F2 e 9e, Zet(Fl) C 9~,(F2) implies Fl C F2. 
AX 6. The poset (b~ C) is dense in (Sf, C__). 
DEF 10. The symbol (%e, C) denotes the completion by cuts of (ge, 

C) (a complete orthocomplemented lattice isomorphic to (~,  C)); the set %e 
is called the set of the exact effects, and the set ~b~ = %~\9e is called the 
set of the theoretical exact effects, or theoretical properties. 

AX 7. The lattice (~,  C) is atomic, and {{S}IS E ~e} is the set of 
its atoms. 

DEF 11. Let us still denote by 5s t the canonical extension of the mapping 
~r defined on 9~, to %e. Then, for every S ~ b~ the exact effect Es = 
5ftl({S}), which is an atom of (%e, C), is called the support of S. Furthermore, 
S is said to be afirst-type state iff Es E 9e, a second-type state iff Es E ~be. 

AX 8. For every S E 9~p, S is a first-type state iff an effect Fs E 9 
exists such that, for every i e i, ~i(S) = pi(Fs), and Fs = Es = 5?;-1({S}) in 
this case. 

I cannot comment on the above set of assumptions and definitions in 
detail here, and I limit myself to pointing out some features that are relevant 
in order to understand their meaning intuitively. Axioms 1 and 2 implicitly 
define the classes of preparing and registering devices on which states and 
effects are interpreted. Axiom 3 introduces a complement F'  for every effect 
F e 9 .  Axiom 4 introduces a symmetry property on the set S~ of pure states 
that is basic for defining the closure operation •177 on the power set ~(S~ 
by means of which one can introduce the complete orthocomplemented lattice 
(~,  C_) of all closed subsets of ~'(Sfp). Then, one can select a subset 9e of 
observative exact effects in the set 9 of all effects that can be interpreted as 
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the set of all testable physical properties of the physical system. Axiom 5 
implies that the order relations C, /_, < defined on ~ can be identified on 
~e C_ ~. Axiom 6 implies that the standard completion by cuts (Garola, 
1985) (%e, C) of the poset (~e, C) is a lattice isomorphic to (~, C_), but it 
does not assume that (~e, C) itself is a lattice. Thus, one can introduce a 
new set De = %e \~  of theoretical properties, that are born whenever the 
completion procedure is performed: of course, ~ can be void, as occurs, for 
instance, in CE By introducing Axiom 7 one can associate a property Es 
(the support of S) with every pure state S, and distinguish betweenfirst-type 
pure states (whose supports belong to ~ )  and second-type pure states (whose 
supports belong to ~ ) .  Then Axiom 8 implies that, whenever S is a first- 
type pure state, Es is the unique minimal property that is certainly true in 
every laboratory i for every physical object in the state S. But it is important 
to note that, even if Es characterizes S for every pure state S, the extension 
pi(S) of S in every laboratory i is strictly contained in the extension pi(Es) 
of the support of S in QP, while pi(S) = pi(Es) in CE Therefore, S and Es 
cannot be identified from a semantic viewpoint in QP, which is important 
for the solution of some old EPR-like paradoxes. 

The above system of axioms implies that the lattice (%~, C) of all 
properties is complete, orthocomplemented, and atomic, like the lattice of 
questions in the Mackey (1963) approach and the lattice of propositions 
in the Jauch (1968) and Piron (1976) approaches. But the distinction 
between theoretical and testable properties does not appear in these 
approaches, while it is basic in my opinion for solving some problems 
in the quantum theory of compound physical systems. For instance, it 
leads to overthrowing the conclusion by Aerts (1982), who assumes that 
testable properties exist which are associated to second-type states that 
are not ruled out by some superselection rule, and then concludes that 
compound quantum systems generally are nonseparable. Indeed, in the 
SR approach separate quantum systems can exist, since the properties 
associated to second-type states are considered as mere mathematical 
symbols that are introduced in order to transform a poset into a lattice. 
This viewpoint is supported by the fact that second-type pure states can 
be distinguished from mixed states in Hilbert space quantum theory (HSQT) 
only by means of correlation properties, that is, second-order properties 
(roughly speaking, properties of properties), and it would be wrong to 
attribute to these the same logical status attributed to the first-order testable 
properties that appear in the language L and that are represented by 
projections in HSQT. 

Finally, I note that the above system of axioms is not complete from 
several viewpoints. For instance, it does not take into account mixed states, 
nor does it allow one to distinguish between CP and QP, since further axioms 
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should be needed in order to make (%~, C) distributive (CP), or orthomodular 
and satisfying the covering law (QP). But the axioms listed above are sufficient 
for the aims of the present paper. 

4. THE P R O P E R T I E S  L A N G U A G E  Le 

The set %e = ~e U ~e of testable and theoretical properties in the 
framework constructed in Section 3 naturally leads us to introduce a new 
language L~ that is identical to L, with the exception of the set ,~, which is 
substituted by %e (hence we call L~ the properties language in the following). 
This new language will still be endowed with a Tarskian truth theory: but 
the extensions of theoretical predicates have no empirical interpretation and 
are defined conventionally. 

It must be noted that L~, not L, is the language that must be taken into 
account if one wants to compare the SR approach to QP with other approaches: 
for, the poset (~, C) of the effects in L generally is not a lattice, while the 
poset (%~, C) of all testable and theoretical properties is endowed with a 
lattice structure that one can compare with the lattice structures appearing 
in other approaches (Section 3). But it must then be stressed that the attribution 
of truth values to sentences in the new language Le may be conventional, 
not only in the case of molecular sentences (as in L, because of the use of 
the formal rules of classical logic), but also in the case of atomic sentences 
of the form E(x), whenever E is a theoretical property that has no direct 
physical interpretation. 

5. CONSISTENCY, COMPATIBILITY, AND TESTABILITY 

The theoretical apparatus described in the previous sections and, in 
particular, the adoption of a Tarskian truth theory in Le, allows one to introduce 
some conceptual distinctions that are impossible whenever a verificationist 
truth theory is adopted. In particular, one can distinguish between semantic 
and pragmatic compatibility of properties and between testability and truth 
of sentences. I will discuss these distinctions here rather naively, in order to 
avoid technicalities. 

(i) Let $1 and $2 be pure states. Intuitively, one can say that $1 and $2 
are semantically compatible, or consistent, iff the set of all properties that 
are certainly true whenever a physical object x is in the state S~ does not 
contain the negation of any property that is certainly true whenever a physical 
object is in the state $2 (in other words, the information embodied in S~ does 
not conflict with the information embodied in $2). This intuitive notion can 
be formalized in our context by introducing, for every S E 5fp, the certainly- 
true domain %s = {E ~ %elEs C E} of S in %e [equivalently, %s = {E E 
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%el for every i E 1, pi(S) __. pi(E)}] and the certainly-false domain %~ = {E 
c %elE l ~ %s} of S in %e [equivalently, %~- = {E ~ %elfor every i ~ i, 
pi(S) N pi(E) = 0}] .  Indeed, one says that St and $2 are semantically 
compatible, or consistent, and writes St C $2, iff %st fq %3L2 = O = ~-~ f3 
%sz. One can then prove (Garola, 1992a) that C is an accessibility relation 
(it is reflexive and symmetric but not, generally, transitive) and that $I C $2 
in QP iff (t~l ITS2) ~ 0, I+l) and 1+2) being the vectors that represent Sl and 
$2, respectively, in HSQT. 

Let us come to %e- Let El, Ez be (testable or theoretical) properties. 
Intuitively, one can say that E~ and E2 are semantically compatible, or consis- 
tent, iff in some laboratory i some physical objects exist that share both El 
and E2. This intuitive notion can be formalized in our context. Indeed, one 
says that E1 and E2 are semantically compatible, or consistent, and writes El 
C E2, iff an i ~ I exists such that pi(E1) N pi(E2) :P ~ .  One can then prove 
that, whenever E1 and E2 are the supports of the pure states St and $2, 
respectively, E1 C Ez iff S1 C $2. 

(ii) Let Fl, F2 be testable properties. Intuitively, one can say that F1 and 
F2 are pragmatically compatible iff they are compatible according to the 
standard notion adopted in QP, that is, iff one can establish whether they 
both hold for a physical object x by means of a suitable measurement on x. 
This intuitive notion can be formalized in our context. Indeed, one says that 
FI and F2 are pragmatically compatible, or conjointly testable, or simply 
compatible, and writes Fl K F2, iff a testable property F E ~ exists such 
that, for every laboratory i ~ ?, pi(F) = pi(Fl) f) pi(F2). Then, the relation 
K can be characterized by showing that FI K F2 iff the meet Fl A F2 in the 
lattice (%~, C) belongs to ~e and is such that, for every i ~ i, p,-(FI f3 F2) 
= pi(F0 (3 pi(F2). 

Both the definition of K and its characterization can be extended to 
the case of n testable properties. Moreover, the empirical interpretation of 
pragmatic compatibility suggests that we introduce two further axioms that 
are needed in order to deal with this kind of compatibility. 

AX 9. For every FI, Fz E ~e, F1 K Fe iff Fl K F~- iff F~- K Fz iff F{ 
KF~. 

AX 10. Let Ft, Fz . . . . .  F,  ~ ~e. Then, FI, Fz . . . . .  F,  are (pragmatically) 
compatible whenever they are pairwise compatible, that is, Fj K Fk for every 
j , k =  1 ,2  . . . . .  n. 

(iii) The notions of testability and conjoint testability defined on %~ can 
be canonically extended to the set ~ of all sentences of the language L~. 
Indeed, one first says that a sentence A of L~ is testable whenever, in every 
laboratory i ~ i, the truth value of A for every interpretation of the (individual) 
variables can be determined by means of suitable measurements. By using 
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this definition one can easily select some sample subsets of testable formulas 
of Le [for instance, the set ~e(x) = {F(x) LF ~ ~e}] and prove an important 
criterion of testability, which states that a molecular open wff A(x) of Le is 
testable iff it is semantically equivalent to an atomic wff FA(x), with FA 
~e. Then, one defines conjoint testability in q~ by saying that the wffs A1, 
A2 of L~ are conjointly testable iff A1 and A2 are testable and, for every 
laboratory i ~ ] and interpretation of the variables ~ri ~ ~i, the truth values 
of A~ and A2 can be determined conjointly by means of suitable measurements. 
Then, one can show that, if the wffs A~(x), A2(x) . . . . .  An(x) are testable, 
they are also conjointly testable iffthe wffAl(x) ̂  A2(x)A....~,A,(x) is testable. 

The above definitions and results are important from several viewpoints. 
Indeed, by suitably selecting subsets of testable wffs of the classical language 
L~, one can recover quantum logic as a theory of testability in QP rather that 
an alternative to classical logic [see Garola (1991); some changes in the 
treatment should now be made in order to take into account the present 
generalization of the system of axioms]. Analogously, fuzzy logic can be 
recovered in an extended classical framework. Furthermore, the problem of 
the completeness of QP can be restated and refined by making reference to 
the language L~ and distinguishing between s-completeness (that is, complete- 
ness of the theory with respect to all interpreted wffs of L~) and t-completeness 
(that is, completeness of the theory with respect to all testable interpreted 
wffs of Le); then, it is possible to show that QP is t-incomplete, hence s- 
incomplete (Garola, 1992a). Finally, ideal quantum measurements can be 
examined in an SR context and shown to supply values that can be attributed 
to the observables before the measurements and independently of the measure- 
ments themselves; this obviously contradicts the orthodox interpretation, 
according to which there are physical properties, or values of observables, 
that are actualized by the measurements and cannot be assigned independently 
of the measurements themselves. 

6. PRAGMATIC VERSUS SEMANTIC CONTEXTUALITY IN QP 

The last remark at the end of Section 5 shows explicitly that SR provides 
a noncontextual interpretation of QP, even if it carefully avoids any ontological 
assumption on reality. This is unacceptable from an orthodox viewpoint, and 
physicists usually think that a noncontextual interpretation is proven to be 
impossible by the Bell-Kochen-Specker (Bell-KS) theorem and by the Bell 
theorem (Mermin, 1993). In order to vindicate SR, I have defended (Garola, 
1994, 1995a,b) the following thesis: (i) the Bell-KS and Bell theorems stand 
on an implicit assumption (metatheoretical classical principle, or MCP), that 
is, the assumption that any empirical quantum physical law holds in every 
laboratory, even in physical situations that are not observative in the sense 
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that QP prohibits checking whether they actually occur; (ii) MCP is not 
consistent with the basic operational philosophy of QP, and a generalization 
of it is required, which reduces to MCP in CP but takes into account the 
existence of sentences that are not conjointly testable in the language of more 
sophisticated theories; (iii) if this generalization is provided, the Bell theorem 
and, I maintain, the Bell-KS theorem can be invalidated, hence a noncontex- 
tual interpretation of QP is not prohibited by QP itself. 

Let us discuss the above thesis in more detail. To this end, let us 
consider within our present framework the distinction between theoretical 
and empirical physical laws, which is standard in epistemology [received 
viewpoint, e.g., Camap (i 966)]. Theoretical laws contain primitive or derived 
theoretical terms and their formal statement requires the general language 
L* (Section 2) that should admit quantification on predicative variables: but 
some theoretical laws can also be expressed by means of the smaller languages 
L and Le (L~ contains, in particular, primitive theoretical properties), and in 
this case the sentences stating theoretical laws are nontestable (hence they 
have a conventional truth value only). On the contrary, empirical laws can 
be expressed by means of testable sentences of L, or L~ (they are usually 
deduced from theoretical laws). 

Let us briefly explore the form taken by those (theoretical or empirical) 
physical laws that can be expressed by means of L~. Bearing in mind our 
interpretation of Le, a typical sample of physical law is a quantified sentence 
of the form 

v = ( v ~ ) ( a ( x ) / S ( x ) )  

with r ~ [0, 1], S ~ 5 ~ and A(x) an open molecular wff of Le where only 
predicates denoting properties occur. Indeed, V prescribes the percentages of 
objects in the state S for which the sentence A(x) regarding properties of 
physical objects is true (more complex forms of laws are not excluded, but 
do not interest us here). 

The wff V expresses an empirical physical law whenever A(x) is testable; 
hence, because of the criterion of testability (Section 5), whenever a testable 
property Fa ~ ~e exists such that A(x) =-- FA(x); in this case V -- (w;c)(Fa(x)/ 
S(x)), and the truth value of V can be determined empirically in every labora- 
tory i E I by means of any registering device in the class denoted by FA. 
Whenever A(x) is nontestable, that is, whenever no Fa ~ ~e exists such that 
A(x) =--- Fa(x), V expresses a theoretical physical law, and its truth value in 
a laboratory i, though defined in our approach, cannot be directly tested; 
furthermore, it is partially conventional, because of the conventions intro- 
duced for logical connectives and/or because of the possible occurrence of 
primitive theoretical predicates. 
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An empirical physical law, which one can assume to be formally deduced 
from a theoretical law, is usually associated, in a given laboratory i, with a 
set of statements (which can be void) that express properties of physical 
objects that hold in the laboratory i, or premises. The law and the premises, 
together with the assignment of the boundary conditions, should allow a 
physicist to state predictions on further properties of the physical objects. In 
our framework, the premises are statements of Le, and the boundary conditions 
consist in the assignment of the truth value of a wff of the form S(x). Then, 
one can reformulate MCP by saying that it states that an empirical physical 
law is true in every laboratory independent of the (pragmatic) compatibility 
of the premises. This reformulation clearly shows that MCP is inconsistent 
with the basic operational philosophy of QE which would rather suggest that 
an empirical physical law cannot be asserted to be true in physical situations 
that are not epistemically accessible, as occurs whenever noncompatible 
premises are assumed (of course, one can neither say that the law is necessarily 
false in these cases). This critique suggests that we substitute MCP with the 
following weaker metatheoretical generalized principle. 

MGP. Let V E ~e express a theoretical physical law, let x ~ X, S e 
5?, A(x) e ~e, let A(x) be testable, and let the wff Va = (w,x)(A(x)/S(x)) 
express an empirical physical law deduced from V. Then Va can be asserted 
to be true in every laboratory i e i where a set of conjointly testable premises 
is assumed. 

The restricted availability of empirical physical laws stated by MGP 
has far-reaching consequences. Indeed, Bell's theorem can be invalidated 
whenever MGP is accepted together with the distinction between empirical 
and theoretical properties established in Section 3 (Garola, 1994, 1995a,b). 
Hence, locality (equivalently, noncontextuality for separated physical sys- 
tems) can be reconciled with QP. Furthermore, I maintain that MGP also 
invalidates the Bell-KS theorem (I am presently working on this topic). If 
the last conjecture is accepted, even unrestricted noncontextuality is recon- 
ciled with QP, and no further objection based on Bell-type arguments can be 
raised against SR. 

It must, however, be noted that MGP introduces a new kind of contextu- 
ality, which refers to the validity of empirical physical laws rather than to 
the attribution of truth values to observative statements. I will call this kind 
of contextuality pragmatic, differentiating it from the conventional kind of 
contextuality (or noncontextuality), which will be called semantic here. Table 
I synthesizes the differences between the conventional and the SR approaches. 
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Table I. 

Semantic contextuality 
for separated systems Pragmatic 

Semantic contextuality (nonlocality) contextuality 

Canonical viewpoint Yes (Bell-KS theorem) Yes (Bell theorem) No 
SR viewpoint No (SR+MGP) No (SR+MGP) Yes 

7. THE CLASSICAL EPR-LIKE PARADOXES 

I would like to close my synthesis of the SR approach by observing 
that it provides an original and straightforward answer to the old arguments 
by Furry (1936a,b) and Bohm and Aharonov (1957), who aimed to show 
that paradoxes follow from the quantum description of the Einstein- 
Podolsky-Rosen (EPR) thought-experiment (note that the SR confutation 
does not require the use of MGP). 

(i) The Furry argument. In brief, this argument consists in considering 
a two-particle system in a suitable second-type (pure) state, say S, in making 
a measurement on particle 1 when it is far apart from particle 2 and, finally, 
in deducing the state, say $2, of particle 2 after the measurement by means 
of standard QP rules. Since no interaction occurs with 2, Furry deduces that 
$2 is the state of 2 even before the measurement. But this result implies that 
the whole system should have been described by a mixture of pure first- 
type states rather than by the pure second-type state S, which is obviously 
a paradox. 

The Furry reasoning immediately proves to be incorrect from the view- 
point of SR: indeed, according to SR, the test performed on 1 allows one to 
attribute a property to 2 which is the support of the state $2, not to say that 
2 was in the state $2 before the measurement. 

One could still object that the state of 2 is $2, in any case, after the 
measurement of l, so that, even in the SR explanation, a change occurs at 
2 which is not justified by a local interaction. Then, I note that this change 
is interpreted in SR as a refinement of the information on the sample of 2 
that belongs to the sample x of the system on which the measurement is 
done. This refinement can occur without any change of the testable physical 
properties of (the sample of) 2. More specifically, it can be proved that a 
measurement on 1 enlarges the set of properties of 2 that are known to be 
true (equivalently, the set of properties that are certainly true for 2); yet, the 
set %3z of all properties that are true for the given sample of 2 does not 
change, nor it changes the set %~ of all properties of the sample that are 
false (of course, %xr2 and %~F2 depend on the specific sample that is being 
considered). 
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(ii) The Bohm-Aharonov argument. This argument can be summarized 
as follows. Let us consider the same physical situation considered above. 
Then, one can attribute different properties to the physical object 2, depending 
on the choice of the measurement that is performed on 1. But these properties 
are generally noncompatible. This means, according to the standard interpreta- 
tion of QP, that the actual properties of 2 are determined by an arbitrary 
choice made by a faraway observer, who does not interact in any way with 
the physical object 2. This introduces some kind of subjectivity in QP, which 
sounds paradoxical. 

The answer of SR to this reasoning is immediate. According to SR, the 
properties of particle 2 considered in the Bohm-Aharanov argument are 
pragmatically noncompatible, but semantically compatible (consistent). Noth- 
ing prohibits that they be conjointly true for a sample of particle 2, both 
before and after a measurement of 1, even if testing one of them prohibits 
testing the other one. The paradox in the orthodox interpretation follows 
from the identification of truth (and meaning) with epistemic accessibility, 
which leads to identifying pragmatic and semantic compatibility. Hence, 
ultimately, the paradox follows from the adoption of a verificationist theory 
of truth, and it is removed whenever this theory is given up. 
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